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Abstract 

Graph theory has been used for modeling chemical structures, that is, chemical 
compounds, intermediates, changes, reactions and mechanisms. Among the most important 
such applications are: (1) structure-property relationships (SAR); (2) design of compounds 
of desired properties; (3) enumeration and construction of compounds of certain classes; 
(4) unique representation of compounds (for documentation needs). Here, we outline 
selected accomplishments of the past, show some current efforts and point to directions 
which may lead to further advancements in chemical graph theory. 

1. Introduction 

We will briefly review selected topics in chemical graph theory, in particular 
being concerned with the use of graphs for modeling chemical structure. This article 
is intended primarily for those who are not familiar with chemical graph theory, 
including also mathematicians who, while familiar with graph theory, wish to learn 
of its applications in chemistry. We must here at the beginning emphasize the 
distinction between graphs and molecules, and also mention that graphs model other 
chemical structures besides molecules. When one interprets vertices as atoms and 
edges as bonds, graphs show only the connectivities within a molecule. This particular 
structural element is exceedingly important and it is of  considerable interest to find 
all the results of a particular connectivity. Hence, graphs will remain the important 
models of chemical compounds. There are several additional structural features that 
"decorate" chemical compounds and require some generalization of simple graphs. 
These include: 

(1) occurrence of multiple connections, which can be modeled by multigraphs; 

(2) presence of distinct atoms, which may be modeled by introducing loops at 
selected verties, or by coloring vertices; 
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(3) possibility of existence of different geometrical forms for the same connectivity, 
which can be modeled by embedding graphs on qualified coordinate grids. 

These more generalized objects, graphs with multiple connections, with loops and 
embedded on selected grids, still belong to the domain of graph theory. Chemical 
bonding, a result of Coulombic interactions as governed by the laws of quantum 
mechanics, is rich in variations. Clearly, all the details of the chemical bond cannot 
be represented by models based on graphs. Because of this, many chemists, who are 
well aware of the delicacies of chemical structure, sensitivities of electron energetics 
to fine details in geometric variations of nuclei positions, never expressed much 
interest in graphs as a mathematical object of interest in chemistry. Of course, graphs 
are not substitutes for molecules; graphs represent a model. 

"Modeling is a ubiquitous and often misunderstood enterpr ise . . ."  wrote M.C. 
Kohn [1] in an enlightening article on mathematical modeling in biology and chemistry. 
Models are built and developed to answer specific questions, and no model will 
answer all the questions that one may pose. Moreover, different models may equally 
well account for the same property of an object [1]: 

"It is unusual for only one model to be compatible with the experimental 
observations. Often the data are not sufficiently extensive to discriminate 
among rival models and new experiments must be designed to answer 
outstanding questions. The statistical, graph theoretical, and sensitivity 
analysis methods can identify the areas for further investigation that are 
likely to produce significant new results." 

Chemical graph theory does not compete with quantum chemistry, statistical 
mechanics or group theory - rather, it is complementary. Hence, chemists should be 
aware of the kind of questions that graph theory can answer. Those who continue to 
identify chemical graph theory with the H~ckel MO model [2] fail to appreciate 
connectivity as a structural element. Besides occurrence in the simple pi-electron 
models, connectivity plays a critical role in such diverse contexts as: enumeration of 
isomers, bond additivities, Kekul6 valence structures, molecular similarity, molecular 
complexity, degenerate isomerizations, etc. Equally, graph theorists who continue to 
refer to graph spectra as electron orbital energies fail to accept the limitations of the 
"nearest-neighbor approximation" of Felix Bloch [3]. This approximation has been 
immortalized in chemistry by Htickel's early applications to benzene and other large 
organic compounds. 

In table 1, we summarize the roles of distinct mathematical disciplines as they 
relate to application in chemistry, particularly to questions concerning chemical 
structure. In table 2, we list several questions that are of interest in chemistry. They 
are classified according to the appropriate mathematical discipline which offers the 
most efficient route to the answer. Tables 1 and 2 should not be taken very rigidly; 
they illustrate a convenient classification of questions of interest in chemistry and the 
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Table 1 

Distinct mathematical branches as applied in theoretical chemistry. 

Calculus 
Differential equations Probability 
Linear algebra Statistics 

Quantum theory 

Planck 
Heisenberg 
Schrtdinger 
Dirac 

Classical statistical mechanics 

Maxwell 
Boltzmann 
Gibbs 

Quantum statistical mechanics 
Fermi, Dirac 
Bose, Einstein 

Quantum chemistry 

Qualitative: Heitler and London 
Pauling Sequential events: 
Mulliken Markov 
Coulson Kolmogorov 

Quantitative: Parr Monte Carlo: 
Pople Ulam 

Chaos: 
Feigenbaum 

Group theory Graph theory 
Lie algebra 

Point groups 
Fluxional groups Enumerations 

Hougen Cayley 
Longuet- Higgins Poly~i 

Symmetric group Networks 

Weyl Kirchhoff 
Wigner 

Unitary group Isomerizations 

Moshinsky Balaban 
Paldus Mislow 
Matsen 

Space groups 

Schonflies 
Seitz 

Color groups 

Shubnikov Topology 

Dynamic groups Hilckel 
...condnued 
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Table 1 (continued) 

Topology Miscellaneous 

Gauge theory 

Weyl 

Geometric phase 

Berry 

Knotted molecules 

Walba 

Catastrophy theory 

Thom 

Fractals 

Mandelbaum 

Lattices 

Partial order 

Muirhead 
Ruch 

Factor analysis 

Hotelling 

Table 2 

Various questions of interest in chemistry and corresponding 
mathematical disciplines involved in solving questions. 

Questions concerning: Domain: 

Molecular geometry 

Molecular spectra - transitions 
- intensities 

Splitting of degeneracy 

Periodic table 

Isomer count 

Bond additivities 

Molecular similarity 

Comparison of molecules 
of molecular fragments Graph 

Random structures statistics and graph theory 

Zero matrix elements (selection rules) 

Thermodynamic properties 

Quantum chemistry 

Quantum chemistry 
Quantum chemistry and statistical mechanics 

Group theory 

Group theory and quantum statistics 

Graph theory 

Graph theory 

Graph theory 

Graph theory 
theory 

Group theory and graph theory 

Statistical mechanics 

tools available. There are other mathematical disciplines of interest in chemistry, 
such as coding theory and cryptanalysis, linear programming, number theory, theory 
of category, topology and knot theory, etc. 

The same questions may sometimes be answered by using different mathematical 
approaches. For example, to find the splitting of a degeneracy of atomic levels in a 
crystal field or to find the number of isomers, or number of conformers (that is, the 
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Table 3 

Important concepts and novel structural features in chemistry. 

Concept/Compound Author Year 

Homologous series 

Valency 

Isomers 

Structural formulas 

Benzene structure -delocalized bond 

Tetrahedral carbon 

Optical isomers 

Isoprene rule 

Coordination compounds 

Conjugation 

Bond dipoles 

Electron dot diagrams 

Hydrogen bond 

Atom and bond additivity 

Diborane - electron deficient system 

Pi sextets - pi-electrons description 

Donor-acceptor bond -transition metals 

Bredt's r u l e -  bridge head restrictions 

Hybridization 

Ferrocene - sandwich molecules 

Fast polymerization 

Isotactic polymers 

Double helix - DNA structure 

Xenon compounds - supposed not to exist! 

Bulvalene - fluxional molecules 

Hafner hydrocarbon - relatively unstable 

Orbital following - cyclization rules 

Antiaromacity 

M6bius-Htickel concept 

Catenenes - interlocked rings 

Resonant sextets 

Van der Waals molecules 

Metal clusters 

Knotted molecules 

Buckminsterfullerene - unusually stable 

Retrosynthesis - synthesis analysis 

Gerhardt 1845 

Frankland 1852 

Butlerov 1860 

Crum Brown 1864 

Kekul6 1865 

van's Hoff and LeBel 1874 

Pasteur 

Wallech 1887 

Wemer 1893 

Thiele 1899 

Langevin 1905 

Lewis 1916 

Latimer and Rodebush 1920 

Fajans 1920 

Dilthey 1921 

Armit and Robinson 1922 

Sidgwick 1923 

Bredt 1924 

Pauling 1928 

Pauson 1951 

Ziegler 1953 

Natta 1953 

Crick and Watson 1954 

protein coding 

Bartlett 1962 

Doering 1963 

Hafner 1963 

Woodward and Hoffmann 1965 

Breslow 1966 

Zimmermann 1966 

Wasserman, Schill 1964 

Clar 1972 

Herschbach 

Walba 1983 

Kroto and Smaley 1985 

Corey 
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number of possible embeddings of, say, a chain molecule on a diamond grid) one 
can in principle use the quantum mechanics and ignore the group theory and the 
graph theory, respectively. The distinction between "in principle" and "in practice" 
may make in many applications the distinction between "to remain ignorant" and "to 
know". This is of crucial importance to chemists, even if belittled by physicists or 
mathematicians. It is over sixty years since Dirac's famous statement in the introductory 
paragraph of his paper on quantum mechanics of many-electron systems [4]: 

"The underlying physical laws necessary for the mathematical theory of 
a large part of physics and the whole of chemistry are thus completely 
known, and the difficulty is only in that the exact application of these 
laws leads to equations much too complicated to be soluble. It therefore 
becomes desirable that approxim ate practical methods of applying quantum 
mechanics should be developed, which can lead to an explanation of the 
main features of complex atomic systems without too much computation." 

Since that time, important developments in chemistry have occurred (table 3 
reviews some old and more recent developments), crowned by some 100 Nobel Prize 
laureates. These include Pauling (1954), Mulliken (1966), Prelog (1975), Lipscomb 
(1976), Hoffmann (1981), Karle and Hauptman (1985), and Corey (1990), who made 
important contributions to mathematical chemistry by advancing the theoretical, 
computational and/or conceptual content of chemistry. 

2. Concepts and ambiguities 

When we confine interest to chemical structure, the basic difference between 
quantum chemistry and chemical graph theory can be summarized as follows: Quantum 
chemistry is interested in "The Nature of the Chemical Bond" [5], while chemical 
graph theory is interested in "The Nature of Chemical Structure" [6]. The distinction 
is important: in the first case, the focus is on the results of short-range interactions 
of electrons and nuclei which result in a stable system - a molecule. In the latter case, 
one accepts (as input information) a particular bonding and the focus is on the results 
of the connectivity. Quantum chemistry can in principle (and for relatively small 
molecules in practice) produce quite accurate information on molecular geometry and 
electron energetics (spectra). One can even simulate composite systems, such as 
properties of a molecule surrounded by layers of other smaller (solvent) molecules. 
Computations can tell, for example, that the central bond in naphthalene is the 
shortest CC bond in that compound, that phenanthrene is more stable than anthracene 
(fig. 1). Similarly, at least in principle, computations can predict that the boiling point 
of 3-methylhexane is greater than that of 2-methylhexane. However, quantum chemistry 
does not tell us why the above are the cases. 

The above questions imply comparisons, such as comparison of different molecular 
fragments, bonds included, comparison of different molecular parts, or comparison 
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Fig. 1. Molecular skeletons (graphs) for naphthalene, 
anthracene and phenanthrene (carbon atoms only). 

of different molecules. Comparison as a mathematical operation is not part of quantum 
mechanics' axiomatic basis. Typically, comparisons between molecules are made by 
considering various structural invariants, but invariants of interest in structural chemistry 
are not necessarily observables of interest in the quantum theory. To answer questions 
that imply comparisons between structures, one needs to introduce concepts that can 
illuminate a particular structural property of interest in the comparison. In table 4, 

Table 4 

Common chemical concepts which qualify as nonobservables. 

Nonobservables - common chemical concepts 

Kekuld valence structure 

Resonance energy 

Pi-electron sextets 

Atomic orbitals 

Molecular orbitals 

Equivalent and localized orbitals 

Orbital energies 

HOMO-LUMO separation 

Bond order 

Atom-atom polarizabilities 

Atom-bond polarizabilities 

Bond dipole 

Hybridization 

Hybrids 

Free valency 

Potential curve 

Equipotential contours 

Electrostatic potential 

Jahn-Teller "effect" 

Force constants 

Molecular surface 

Molecular volume 

we list several concepts used in chemistry which do not represent observables in the 
strict sense of quantum mechanics. Many of these concepts have been introduced in 
the early developments of the quantum chemistry. To those not initiated in the graph 
theory they may appear as the legitimate quantum chemistry concepts. The label 
"quantum" is, however, more historical than substantive and many of the concepts 
of table 4 are today recognized as essentially graph theoretical in nature or as equivalent 
to selected graph theoretical concepts. 
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Table 5 

Ambiguous concepts of chemistry 

Structure Characterization 
Size Sensitivity 
Shape Similarity 
Fragment Functionality 
Component Hierarchy 
Complexity Domination 
Stability 4 ~  
Reactivity 
Profile 

In table 5, we list several widely used concepts in chemistry that yet remain 
to be better characterized. We may view the items in table 5 as a motivation for a 
continuous search for appropriate graph invariants and structural invariants that may 
help clarification of some such concern. We have deliberately crossed out Aromaticity, 
which has been one of the central concepts of organic chemistry for over a century. 
The reason is that this concept has been successfully resolved (vide infra) using the 
graph theoretical analysis of  Kekul6 valence structures in terms of conjugated 
circuits [7]. Clarification of the important chemical concepts of  table 5 may be 
considered as "open challenges" or "open problems" of the chemical graph theory. 
Resolving some of these problems is likely to result in the advancement of chemical 
science. One may be reminded of  a quote of William Thompson (Lord Kelvin) [8]: 

"When you measure what you are speaking about, and express it in 
numbers, you know something about it; but when you cannot measure 
it, when you cannot express it in numbers, your knowledge is of  a 
meager and unsatisfactory kind: it may be the beginning of  knowledge, 
but you have scarcely, in your thoughts, advanced to the stage of science." 

However, one should not overlook that a qualitative character of  some concepts in 
chemistry may be more desirable, at least for the time being. Hence, one should not 
insist on metrics at all costs. It is only when a concept reaches a phase of full maturity 
that a quantitative description may be more productive than a qualitative one. This 
is likely to be the case today with the concept of  similarity, sensitivity and complexity, 
for example, but not necessarily with concepts such as shape or profile. Ambiguities 
of such concepts have served their purpose, and there is a danger that too rigid a 
definition may hinder rather than help and even lead to an unproductive direction. 
Hence, the problem is not in arriving at a solution at any cost, but to arrive at a 
characterization which is more useful than the hitherto used qualitative notion. 
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It is appropriate to end this section on the distinctive role of quantum chemistry 
and graph theory in chemistry with a courageous quote from a paper by Gordon and 
Kennedy [9], even though it relates specifically to the problem of bond additivities 
of some molecular properties: 

"The theory of graphs, a rapidly developing mathematical discipline, is 
immensely useful in chemistry. Using quite elementary concepts and 
terms of graph theory, a single systematic definition of about 50 words, 
contains as special cases, practically all that is useful in previously 
proposed additivity schemes for predicting standard thermodynamic data. 
The customary calculation from standard enthalpies of substantial 
delocalization energies in the form of "steric corrections" is criticized 
as being biased. It is doubtful whether quantum theory had so far contributed 
significantly to the results of analyzing enthalpy data on alkanes." 

The past twenty years have seen an unusually fruitful expansion of chemical 
graph theory, growth in number of investigators, publication of many reviews [10], 
several books [11], including the first monograph on chemical graph theory [12], 
proceedings of regular conferences where chemical graph theory is a central subject 
[13], and two journals with the major content being chemical graph theory [14]. 

Separation of factors 

In modeling, it is natural to simplify the problem when possible. In particular, 
in mathematical analyses it is desirable to reduce the dimensionality of a problem 
when possible. Thus, typically in quantum chemistry, the total molecular wave function 
is "broken down" gradually into various factors. Such a factorization, of course, is 
approximate only and under certain conditions may not be satisfactory. In table 6, 
we illustrate the situation for a representative polyatomic molecule. The bottom line 
summarizes the outcome; various factors can then be considered separately: 

When the Bom-Oppenheimer approximation [15] fails (for example, the 
case of the hydrogen bond), we can no longer separate nuclear motion from electronic 
motion. Another manifestation of the failure of the separation of electronic and 
nuclear motion is manifested in the dynamic Jahn-Teller  "effect" [16]. Similarly, 
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Table 6 

Common simplifying steps in the theoretical analysis of various molecular properties. 

Born-Oppenheimer approximation: q~mol~cule = tFnuclei hu~lcct~on~ 

Failures: 

Jahn-Teller "effect": molecule takes less symmetrical shape if electronic state is degenerate; 

Fluxional molecules: due to low barrier nuclei continuously change relative positions 

Vibrational-Rotational separation: (13nuclea r motion = di~vibralion lir3rotztion 

Breakdown: 

Coriolis coupling: causes distinct rotational fine structure in vibrational bands associated with 
degenerate vibrations; 

Centrifugal distortion: high rotational levels associated with stretching of some bonds 

Independent particle model: F(1, 2, 3 . . . . .  n) = a(1)b(2)c(3)  . . . x(n) 

Many electron wave function --~ antisymmetrized product function 

Corrections: 

Configuration "interaction" 

Electron correlation 

Space-spin separation 

Breakdown: 

Spin-orbi t  coupling 

the effect of Coriolis forces is a manifestation of the limitations of separation of 
vibration and rotation, which results in apparently different rotational constants in 
vibration-rotation spectra in the infrared [17]. Another illustration of the difficulties 
with the separation of vibration and rotation occurs in fluxional molecules. 

Is there a similar useful separation of molecular structure which will allow 
various structural features of a molecule to be examined separately, at least in 
prevailing instances? In applications of the graph theory to complex molecules it 
would help if one could "dissect" a molecule and focus attention on individual 
selected structural features, rather than consider the molecule, as is typically the 
case, as a whole. Recently [18], we suggested the following resolution of a structure: 

(size) (shape)( funct ion)"  

Here, "size" basically will depend on the number of atoms in a compound. "Shape" 
is somewhat less clearly defined, but essentially it discriminates among molecules 
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of the same size but different geometry. Finally, "function" involves variations in 
the atomic composition, that is, the presence of heteroatoms. The role of heteroatoms 
becomes more clear when a molecule is situated in a proper environment. For 
example, the same molecule in a solution, or adsorbed on a surface, or in the 
vicinity of another macromolecule, such as occur in modeling drug-receptor systems, 
will act differently. Quantitative studies extending the structure-property relationship 
to drug-receptor  interactions is known as QSAR (Quantitative Structure-Activity 
Relationship) [19]. In this field, of particular interest are the solubility of compounds, 
the transport through membranes, the resistance to degradation, etc. With such 
applications in mind, we can further factor "functionality" of molecules, following 
[20], and arrive at: 

(field/inductive'] (resonance')(polarizability] 
(size) (shape) k " effect ) k ,  effect ) 

The above separation helps one to focus attention on a single structural variable at 
a time. If under "shape" we understood "isomeric variations", that is, the variations 
in connectivity within isomers, such as the eighteen isomers of octane illustrated 
in fig. 2, we could study the mutual correlation among various molecular properties 
for these compounds by excluding the dominant role that size plays [18]. The same 
physico-chemical properties, when octanes are examined separately, show a much 
lesser degree of interrelatedness than that found for alkanes as a whole [21]. Clearly, 
"size" as a variable obscures the role of "shape" as a variable, which only becomes 
more clear when the dominant role of the molecular shape is eliminated (by restricting 
the analysis to molecules of the same size). The formal separation of a chemical 
structure in "size" and "shape" factors results in an additive decomposition of 
appropriate molecular descriptors. The descriptor for the size is constant for molecules 
of the same size, while other variables may critically depend on the shape, that is, 
will change among isomers (and conformers). 

4. Similarity 

Among the "ambiguous" concepts of table 5, we will only briefly comment 
upon similarity. The importance of this concept for chemical application is clear if 
one recollects the universally accepted paradigm that similar molecules have similar 
properties. A recent book on "Concepts and Applications of Molecular Similarity" 
offers a fair introduction to the topic [22]. One of the earliest recognitions of this 
postulate can be traced to Emil Fisher [23], who modeled drug-receptor  interaction 
by a "lock and key" analogy. The postulate on similarity, or what may be more 
appropriate to refer to it, following E.B. Wilson [24], as one of the "emergent laws", 
is underlying much of QSAR methodology. It can be formulated in alternative 
forms, for example, as the Principle of Graduality [25]: 

"The changes in Nature are gradual", 
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Fig. 2. Molecular skeletons (graphs) 
for octane isomers (carbon atoms only). 

which may be recognized as a paraphrase of Aristotle's "Natura non facet saltus" 
(Nature does not make jumps). With discrete objects, clearly there is a break of the 
traditional concept of the continuity; however, the above principles state that the 
concept of vicinity, which is defined for discrete objects, is somewhat similar to 
neighborhood,  the basic concept of topology and the continuum. Thus, we can 
speak of close points (structures) and more distant points (structures) in a structure- 
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space which consists of  clustering of  disconnected points if we can arrive at a useful 
characterization of  structures and an adequate metric. Perhaps a more pragmatic and 
less philosophical approach follows from a formation of the similarity principle as 
follows: 

"Structures or systems that differ little in the mathematical invar ian t  
properties will differ little also in their physical, chemical, and biological 
properties." 

In the above quote, taken from ref. [26], we inserted the attribute invar ian t  to 
emphasize a distinction between properties that are independent of conventions 
(such as an assumed labeling of  atoms, or an orientation of  a coordinate system 
adopted). This was necessitated to avoid ambiguities in a statement on "all mathematical 
properties" because mirror images of chiral objects are mathematically the same, 
yet they may be differentiated. For instance, one might identify unimodular determinants 
to mirror image coordinate systems with the Jacobian determinants taking values 
+ 1 and - 1 for the right- and left-handed cases, respectively. The above immediately 
reveals a strategy to attack the problems of  s t ructure-property relationship. Rather 
than directly trying to relate a property to structure, we may instead investigate 
different mathematical properties (invariants) of  a structure and then follow with 
proper ty-proper ty  correlations in which relatively simpler mathematical properties 
are used to express more complicated or convoluted physico-chemical and biological 
properties. 

Before considering specifics, let us emphasize the qual i tat ive nature of the 
above similarity postulate. Deliberately, we use the attribute "little" without specifying 
how small little is. Neither do we qualify which mathematical properties are to be 
used, nor do we say what measure of  similarity may be most suitable. Also, we have 
to emphasize that "structure" or "system" in the above postulate is the totality of 
atoms or molecules that mutually interact. A chiral object and its mirror image, 
viewed separately and isolatedly, will have all mathematical properties the same. 
This is analogous to the time dependence of a mechanical system in physics which 
under the reversal of  time does not yield a distinguished description of the motion. 
It is the presence of another object that discriminates between chiral antipodes; 
hence, when chirality is manifested one has to take a whole system, the chiral 
molecule and its environment of all interacting parts, as "the structure". 

It should also be clear that the similarity, even when one selects the metrics, 
is not an absolute quantity. Recently, however, an attempt to define an absolute 
similarity between a pair of structures was considered [27]. The idea behind such 
an absolute measure is the notion of a complete, or almost complete, basis of  
molecular descriptors that is analogous to a complete (or almost complete) basis of  
infinite vector spaces. While a search for an "almost complete basis" of  invariants 
for a characterization of chemical structures is of  considerable interest, for the time 
being similarity will continue to be confined to selected molecular descriptors. 
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Hence, similarity should be qualified by the appropriate attribute. Two molecules 
may be of  similar size, of  similar shape, of  similar functionality, they may be 
similar with respect to path content, with respect to cyclic structure, with respect 
to selected components, etc. They may be similar in some properties but not in 
others. The need for such diversification is that for many molecular properties, not 
the molecule as a whole but parts of  a molecule are responsible. Similarity satisfies 
axioms analogous to those for a metric, that is, 

(1) S(A, B) > O, 

(2) s ( a ,  B) = S(B, A), 

i.e. to every pair (A, B) one assigns a non-negative 
quantity S; 

i.e. similarity does not depend on the order of comparison. 

Similarity is not transitive, that is, if A is similar to B and B is similar to C, it does 
not necessarily follow that A is similar to C (within the prescribed margins for a 
quantitative measure of  similarity). That this is the case one can recognize by 
ordering a dozen structures so that successive structures differ little. The accumulative 
effect of  gradual changes will, however, result in considerable differences between 
the initial and the final structure. Therefore, contrary to a distance function, neither 
the triangular inequality needs to hold, nor does S(X, Y) = 0 imply X = Y. In addition 
to the most customary Euclidean distance, there are other similarity coefficients that 
have found application in s t ruc ture-proper ty-ac t iv i ty  studies. 

5. Useful invariants  

We will here briefly review a dozen graph invariants that have found use in 
various chemical applications. Emphasis here is on use, which is interpreted broadly. 
In some cases it leads to structural insights, in some cases to predictive qualitative 
or quantitative models. In some applications it may lead to a resolution of  practical 
questions, such as the discrimination of non-isomorphic structures. 

5.1. WIENER NUMBER - A MEASURE OF A MOLECULAR VOLUME 

Wiener was intrigued by unqualified statements that molecular branching is 
the critical parameter which determines the relative magnitude of  various molecular 
thermodynamic properties [28]. He therefore tried to quantify such correlations and 
in doing this, introduced a purely graph theoretical descriptor W defined, for trees 
only, as [29]: 

"The path number W is defined as the sum of  the distance between any 
two carbon atoms in the molecule, in terms of carbon-carbon  bonds. 
Brief method of calculation: Multiply the number of  carbon atoms on 
one side of  any bond by those on the other side; W is the sum of  these 
values for all bonds." 
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Platt [30], immediately recognizing the importance of such descriptors, tried to 
rationalize their interpretation. He has shown that W relates to the overall molecular 
volume. Several very successful linear regressions by Wiener involved yet another 
graph theoretical descriptor P, the count of paths of length three. With these two 
descriptors, Wiener obtained regressions for various molecular properties for several 
families of compounds (alkanes, alcohols, fatty acids, amines) [31]. 

5.2. THE CONNECTIVITY INDEX 

Can one characterize molecular branching by a single structural descriptor? 
This problem was considered in the mid 1970's by the present author [32] and 
resolved successfully. By first ordering isomers, such as the following hexanes: 

n-hexane > 3-methylpentane > 2-methylpentane > 2,3-dimethlybutane > 2,2-dimethylbutane 

and by decomposition of the corresponding hydrogen suppressed molecular graphs 
into bond components, such that one discriminates among C - C  bond types (m, n), 
where m, n signify the valences of the end vertices, we obtain: 

2(1, 2) + 3(2, 2) > 2(1, 2) + (1, 3) + 2(2, 3) > (1, 2) + 2(1, 3) + (2, 2) 

+ (2, 3) > 4(1, 3) + (3, 3) > (1, 2) + 3(1, 4) + (2, 4). 

Construction of a descriptor requires finding a solution to the above set of inequalities. 
Inequalities of course may have an infinite number of particular solutions. A solution 
will guarantee that a bond additive property following the same relative sizes for 
the above compounds (and other smaller alkanes used to have enough number of 
inequalities) will produce a correlation of high quality. As outlined in [32], a simple 
prescription: (m, n) = 1/'~(m • n) leads to numerical weights for different bond types 
that produce a correct relative ordering of isomers of small alkanes. Thus, by 
summing the contributing 1/~l(m. n) over all bonds, we obtain a single-number 
descriptor designed to yield good correlations for selected molecular properties. 
This defined the connectivity index 1 Z, which has found wide application in structure- 
property-activity studies [32, 33]. Later, the connectivity index 1Z was generalized 
to "higher" connectivity indices "Z [35] and to graphs representing hetero- 
molecules [36]. 
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5.3. PATHS OF DIFFERENT LENGTHS 

Platt [37] anticipated that path numbers may become useful descriptors of 
molecules. However, not until the late 1970's have paths been shown as useful 
descriptors. In a series of papers, Randi6 and Wilkins [38] have shown that short 
paths, in particular paths of length 2 and 3, suffice to order isomers in a hierarchical 
way and that the same ordering reflects upon the relative sizes of  several of their 
physico-chemical properties. Later, the same authors have shown that paths offer 
a practical basis for a quantitative measure of molecular similarity of interest in 
structure-activity studies. The result of such comparisons is the partial order for 
the structures based on the considered property [39]. 

It should be pointed out that examination of molecular paths has led to a 
recognition of novel molecular properties. Carbon-13 NMR chemical shifts offer a 
direct probe into atomic environments of carbon atoms and probably represent one 
of the currently most valuable tools to study molecular structure and conformations. 
However, the variation of the sums of all carbon-13 chemical shifts among isomers, 
such as alkanes, shows pronounced regularities [40] and thus qualifies as an interesting 
molecular property, even though it represents a mathematical construction. Very 
successful correlations of 13C chemical shift sums in alkanes were proposed using 
a single parameter based on a combination of path numbers [41]. 

5.4. WEIGHTED PATHS 

Clearly, paths of shorter length are of interest as molecular descriptors in 
multivariate regressions as potential dominant components in structure-property 
correlations. Longer paths supply information of interest in comparisons of structures, 
for clustering, ranking and similarity analysis. Because typically there are many 
paths of intermediate length, they may obscure the role of shorter paths. For this 
reason, a weighting procedure that assigns to each bond a factor less than 1 should 
be considered. Such weights will weaken the contributions of longer paths and give 
prominence to the role that shorter paths play. It was found that the weighting factor 
1/~l(m • n ) ,  introduced in the connectivity index, offers a suitable weighting procedure. 
In table 7, we illustrate weighted paths for a fragment of clonidine, a molecule of 
interest in QSAR [42]. 

5.5. ATOMIC ID 

If weighted paths for each atom are added, one obtains a single-number 
representation for each atom (vertex) in a graph. Such atomic parameters were 
called atomic identification numbers, or atomic IDs, because typically non-equivalent 
atoms in a molecule will in this way be assigned different numerical values [26]. 
Moreover, atoms in different molecules also show distinct ID numbers. Thus, atomic 
ID numbers are characteristic of atomic environments. Significantly similar atomic 
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Table 7 

Weighted path numbers for a 10-atom fragment of clonidine derivaties a). Each row gives 
information for individual atoms, the last row gives the results for the whole fragment (molecule). 

Atom Pl P2 P3 Pa P5 P6 P7 Atomic ID 

1 0.817 0.272 0.181 0.179 0.037 0.019 0.008 2.516 

2 1.150 0.222 0.219 0.045 0.023 0.001 0.001 2.674 

3 1 0.020 0.136 0.068 0.028 0.016 3.177 

4, 8 1.319 0.426 0.302 0.064 0.049 0.001 3.170 

5, 7 0.908 0.622 0.193 0.175 0.032 0.16 2.945 

6 1 0.408 0.372 0.091 0.082 2.953 

9, 10 0.577 0.428 0.246 0.175 0.037 0.029 2.497 

Molecule Molecule ID 

4.788 2.392 1.195 0.605 0.203 0.071 0.013 19.271 

a) 9 

10 

environments are associated with numerical values for atomic ID which are similar. 
This regularity is the basis for the use of atomic ID in QSAR [43]. 

5.6. MOLECULAR ID 

Similar to atomic ID is the molecular ID number [44] defined as the sum of 
all weighted paths in a molecule. Again, after examining the numerical values for 
molecular ID for several molecules, one sees that similar molecules show numerically 
similar ID numbers. Thus, ID numbers clearly capture considerable structural 
information. Therefore, they may be of interest in structure-property-activity studies. 
For example, a collection of therapeutically useful antihistamines, anticholinergics, 
antihypnotics, antidepressants, anticonvulsants and analgesics, which are apparently 
similar, have been clustered into various subclasses solely based on molecular ID 
numbers [45]. This shows the potential of ID numbers as a molecular descriptor. 

5.7. PRIME ID NUMBERS 

Molecular ID numbers apparently condense important structural features into 
a single numerical parameter that parallels some molecular properties. On the other 
hand, we see also that different molecules have distinct ID values. Szymanski and 
collaborators [46] undertook to examine the degree of uniqueness of ID numbers 
for alkane graphs, that is, cyclic graphs with a maximal valency of four. An exhaustive 
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I t  lo o 
O 

Fig. 3. The smallest graphs with the same molecular identification 
numbers (i.e. same sum for all weighted paths in a molecular graph). 

(and efficient) computer search revealed the smallest 
(fig. 3) for pairs of  graphs having n = 15 vertices as 
graphs with the same ID numbers. This represents a 
7500 graphs, which was an hitherto unheard of  power 

pair of nonisomorphic trees 
the smallest such duplicate 

pair of  graphs among some 
of  discrimination. Balaban's 

J index [47], which was so far the most discriminatory, produced duplications when 
n = 10, which is in the field of  "only" 150 acyclic graphs. Despite the failure of  the 
ID numbers to be unique in such high resolution power, hitherto not even approached 
by other topological indices [48], the ID numbers remain of interest because they 
lead to numerically similar entries for apparently similar structures and thus may 
serve a purpose in screening large data bases. 

One should bear in mind, however, that the two goals: (i) design of  a useful 
descriptor for QSAR, and (ii) design of a useful descriptor for documentation do 
not parallel one another. For the latter purpose, one wants to maximally discriminate 
among structures. Hence, if ID numbers are to be used in documentation, one 
should introduce as many different weights as there are different bond types. Hence, 
rather than using the algorithm 1/',l(m • n), one can assign to various (m, n) bond 
types successive prime numbers and construct similar weights as 1/~](piPj), where 
Pi and pj are the corresponding prime numbers. In this way, one reduces the chance 
of  accidental duplication of  ID numbers [49]. Indeed, as Szymanski and co- 
workers [50] have shown, the revised prime number IDs (based on the prime 
number weighting procedure as outlined in ref. [49]) results in even greater 
discrimination among alkane graphs - the first duplicate occurs for n = 20, about 
one graph in 600,000. While nonunique labels are of no particular interest in mathematics 
as such, in practice a scheme which leads to such high resolution among structures, 
as prime ID numbers do, may nevertheless be of  considerable interest in chemistry. 

5.8. DISTANCE MATRIX ANALOGS OF Z 

The connectivity index ~Z derived in a bond-additive fashion by discriminating 
various (m, n) bond types was extended by Balaban [47] to distance matrices. Here, 
one uses the entries (x, y) of  the distance matrix D of a graph as the source for 
construction of  the bond-additive quantity J using the same algorithm 1/~l(x, y) to 
which a normalizing factor was attached. Balaban and Quintas [51] examined the 
smallest graphs with the degenerate index J. Each such study tells something about 
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the capabilities of a single-number representation of graphs; however, the index J 
has not yet found much practical application in QSAR. 

5.9. THE HOSOYA INDEX Z 

Hosoya [52] introduced an important index Z for graphs defined as the sum 
Zp(G, k), where p(G, k) is the number of ways in which k nonadjacent edges are 
chosen from a graph G. By definition p(G, 0) = 1, and trivially p(G, 1) = E, the 
number of edges in a graph. The summation extends to [N/2], N being the number 
of vertices and the Gaussian brackets [ ] represent the greatest integer function. Z 
was introduced initially as a "newly proposed quantity characterizing the topological 
nature of structural isomers of saturated n hydrocarbons", intended to be a "topological 
index as a sorting device for coding chemical structures" [53]. However, soon it was 
found to be of interest in structure-property studies since it shows correlations with 
several thermodynamic properties [54]. Note that similarly the DARC system by 
Dubois [55] and the codes for characterization of structures by Willett [56] were 
both initially designed as documentation-oriented systems, but soon were applied 
to the study of structure-property relationships. Because of the structural basis of 
such systems, they often adequately reflect various structural factors of a molecule 
and hence become of potential interest in the structure-property applications. One 
may say that interest in initial studies "switched" the priorities, and such studies 
became oriented toward coding that is of interest in property studies rather than 
being solely confined to interests of chemical documentation. 

Hosoya's Z index, called the topological index (although in fact it would be 
more appropriate to call it the graph theoretical index), was the first index deliberately 
introduced to represent a structure (graph) by a single number. Today, the term 
"topological index" has become genetic and stands for any single-number representation 
of a graph. 

5.10 KEKULI~ STRUCTURE COUNT K 

An important class of organic compounds, the cyclic conjugated hydrocarbons, 
received considerable attention in theoretical chemistry. In fig. 4, we illustrate 
carbon skeletons of a number of polycyclic conjugated hydrocarbons. A convenient 
classification of such is: 

(1) benzenoids = systems composed of fused hexagons (and having K ¢ 0); 

(2) alternants = nonbenzenoids having in addition to benzene (hexagons) tings 
also 4m membered tings; 

(3) nonalternants = systems having (besides even tings) also odd rings. 

Cyclic systems (without exocyclic CC bonds such as in triphenylmethyl, or even 
more stable tris(biphenyl)methyl) with K = 0 are typically hypothetical, being non- 



116 M. Randid, In search of structural invariants 

Benzenoid 

Nonbenzenoid- Alternant 

Nonbenzenoid-Nonalternants 

<> d5 
Nonexistent 

Fig. 4. Conjugated hydrocarbons: small benzenoid systems 
(top row); alternant nonbenzenoids (i.e. systems with 
even cycles only) (next row); nonalternants (systems 
with odd rings) (third row); and nonexistent (last row). 

existent or at least highly reactive. Empirically, it was found that among structures 
of similar size, those with larger K are more stable [57]. K, the number of Kekul6 
valence structures of chemistry, is equivalent to the number of perfect 1-matchings 
for the corresponding graphs in mathematics. In fig. 5, we illustrate eleven Kekul6 
valence structures of benzopyrene. There is considerable literature in chemical 
graph theory on the enumeration of Kekul6 valence structures [58-60]. In particular, 
considerable attention was given to benzenoid systems (that is, systems built from 
fused benzene rings). An early elegant algorithm by Gordon and Davison [61] was 
generalized to nonbenzenoid chains of fused rings [62], to branched catacondensed 
benzenoids [63], and to lattices of benzenoids [64]. Finally, John and Sachs [65] 
produced an elegant determinantal form for deriving K for a generalized benzenoid 
system. 
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Fig. 5. All Kekul6 valence structures of benzopyrene. 

6. Con juga ted  circuits and aromaticity 

We will end the review of selected molecular descriptors by considering 
conjugated circuits. Despite the long history of  Kekul6 valence structures and an 
intensive use thereof in the early valence bond (VB) calculations, the conjugated 
circuits as structural invariants were overlooked for a long time! Conjugated circuits 
are defined for individual Kekul6 valence structures. In fig. 6, we illustrate them 

Fig. 6. Conjugated circuits within a single Kekul6 valence structure 
(one of the eleven Kekul~ valence structures shown in fig. 5). 

for one of  the eleven Kekul6 valence structures of  benzopyrene of  fig. 5. A circuit 
in a valence structure in which there is a regular alternation of  CC single and CC 
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double bonds defines a conjugated circuit. They are necessarily even and can be of 
size 4n + 2 and 4n, labeled R, and Qn, respectively. Hence, while a conjugated 
system can be viewed as a superposition of Kekul6 valence structures, each Kekul6 
valence structure can be decomposed into conjugated circuits. Hence, we can view 
a conjugated system as a superposition of various conjugated circuits. In systems 
having essentially single C - C  bonds (or essentially double C = C  bonds), such a 
superposition does not change the singular nature of these bonds which are part of 
the conjugated framework. The decomposition of Kekul6 valence structures of 
conjugated systems into contributing conjugated circuits has proved very useful in 
various applications: 

(1) The average contribution of Kekul6 valence structures yields an expression 
for molecular resonance energy (RE) [7, 66-68].  RE can be defined as that part of 
the molecular energy that makes a cyclic system more stable compared to an appropriate 
corresponding noncyclic standard. That is, RE represents a deviation in molecular 
energy from bond additivity. The expressions of RE in R, and Q~ show that this 
deviation of the energy of a cyclic system itself is circuit-additive, but only the 
conjugated circuits make a contribution. 

(2) The 4n + 2 conjugated circuits make a positive contribution (i.e. add to 
the stability of a molecule), while 4n conjugated circuits destabilize the structure. 
On the basis of this empirical fact, one can classify cyclic conjugated systems into 
the following [66]: 

(i) Those having only 4n + 2 conjugated systems, hence most stable. This class 
is by definition considered as aromatic. 

(ii) Those having only 4n conjugated circuits, hence most unstable. This class by 
definition represents so-called antiaromatic systems, the concept introduced 
by Breslow [69]. 

(iii) Systems having both 4n + 2 and 4n conjugated circuits, which will show 
various degrees of aromaticity, depending on the relative role of R n and Q, 
contributions. 

In fig. 7, we illustrate carbon skeletons of several aromatic and antiaromatic 
cyclic conjugated hydrocarbons. Considerable literature on conjugated circuits followed 
the initial work of Randi~ and collaborators [7,66,67]. In particular, this includes 
the relationship of the conjugated circuit model to the approach to the VB Resonance 
Theory by Herndon [70], the enumeration of conjugated circuits, the parametrization 
of the R n and Qn, their statistical treatment, etc. [71]. In addition to offering a 
simple computational approach to the molecular RE, the concept of conjugated 
circuits is to be noticed for important conceptual developments. It gives insights 
into the important distinction between various polycyclic conjugated systems. A 
simple geometrical classification of cyclic conjugated systems into alternants and 
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(a) 

/ \ 

j j J t X \  I I 

(b) 

Fig. 8. Buckminsterfullerene graph (a) and projection (b). 
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nonaltemants does not highlight the fundamental distinction between apparently 
similar azupyrene (I) and acepleiadylene (II): 

( 
(I) (II) 

However, the decomposition of the Kekul6 valence structures of the two polycyclic 
hydrocarbons in conjugated circuits immediately shows a basic distinction between 
the two. We obtain the following expression for their respective molecular RE [67]: 

azupyrene: (4R l + 2R 2 + 6Qa)/4; 

acepleiadylene: (4R~ + 2R 2 + 6R3)/4. 

Thus, the former is by far less stable, while the latter should show considerable 
similarity in properties to typical benzenoid hydrocarbons even though it is formally 
classified as a nonbenzenoid. The presence of Qn contributions makes the corresponding 
hydrocarbons more elusive in synthesis. Hafner [72] was the first to synthesize 
some of these more elusive cyclic conjugated hydrocarbons. 

As another illustration of the use of conjugated circuits, consider buckminster- 
fullerene (fig. 8), a carbon C60 cage which has recently received considerable attention. 
Klein and coworkers [73] were the first to report that this unusually stable cage has 
12,500 Kekul6 valence structures. Later, they were able to count conjugated 
circuits (using the transfer matrix approach [74] and taking advantage of the fivefold 
symmetry axis of the molecule), not only in this particular cage but also in all cages 
built from fusions of five, six and seven rings [75]. They reported the corresponding 
RE, which clearly shows that buckminsterfullerene C6o is visibly more stable. No 
other theoretical approach could lead to such a reliable estimate of the molecular 
stability. 

7. Polynomials as a source  for invariants 

The coefficients of graph polynomials offer a route to a characterization of 
graphs. We will briefly mention half a dozen of such, although the use of most of 
the polynomials in structure-property applications remains yet to be proved. 
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7.1. CHARACTERISTIC POLYNOMIAL 

This is by far the most widely known and discussed polynomial in 
graph theory as well as in chemical graph theory. Various methods of deriving 
the characteristic polynomial Ch(G;x) for graph G are known [76], clearly 
those based on the trace of the adjacency matrix being sufficiently efficient [77]. 
Factoring of the characteristic polynomial was reported [78] and alternative 
representations in Chebyshev polynomials have been shown to have some interesting 
properties [79]. 

Graph spectra [80] (eigenvalues of the adjacency matrix) also received 
considerable attention in the chemical literature. In particular, this relates to isospectral 
and subspectral graphs [81]. Belatedly, however, graph spectra were recognized as 
equivalent to pi-electron molecular orbital energies of the so-called HMO (H~ckel 
molecular orbital model) [2]. Belatedly, because by early 1970 the HMO model was 
no longer a preferred tool. Today the HMO model serves primarily as an educational 
tool, although neither its historic value nor its interpretation as a topological 
model for complex molecules can be denied [82]. It is still occasionally found of 
interest [83]. 

7.2. ACYCLIC OR MATCHING POLYNOMIAL 

Lieb [84] was the first to investigate the polynomial that for trees coincides 
with the characteristic polynomial. The acyclic polynomial can be derived for a 
general graph either from Hosoya's p(G, k) numbers or, alternatively, from a 
decomposition of a graph into characteristic subgraphs consisting of disjoint edges 
and disjoint cycles only [85]. The acyclic polynomial Ac(G;x), usually referred to 
in the mathematical literature as the matching polynomial, has all roots real [86]. 
Another intriguing property of the acyclic polynomial was outlined by Godsil and 
Gutman [87]. They have shown that the acyclic polynomial appears as a factor of 
a characteristic polynomial of an augmented acyclic graph. The augmented 
acyclic graph [88] is constructed by depicting all paths in a cyclic graph, as 
illustrated in fig. 9. This property aids in obtaining acyclic (matching) polynomials 
for many smaller graphs [89]. The construction of acyclic polynomials for large 
complex graphs can be unusually tedious, but if graphs have periodicity, such as 
systems built of fused benzene rings, the transfer matrix approach helps. The 
construction of acyclic polynomials using the transfer matrix was shown on several 
examples [90]. In fig. 10, we show the results for smaller benzenoids expressed in 
matrices I, J, K outlined by Randi6, Hosoya and Polansky [91]. It is of some interest 
to see that such matrices on the one hand may be viewed as a nomenclature device. 
However, on the other hand, by a proper interpretation they become operators. This 
illustrates the power of mathematical nomenclature which allows algebraic 
manipulations. 
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Fig. 10. Smaller benzenoids with labeling which identifies the form 
of the transfer matrix that will produce acyclic (matching) polynomials. 

7.3. THE ALTENBURG POLYNOMIAL 

Altenburg [92] proposed a polynomial for acyclic graphs, the coefficients of 
which count paths of different length, or alternatively, count pairs of vertices a 
distance p apart. When extended to cyclic structures, as outlined by Hosoya [52], 
such a polynomial gives the population of a given topological distance in a graph. 
From the coefficients of such a polynomial, Altenburg constructed sums W = E Q:k 
(not being aware that the result gives the Wiener number) and has shown a linear 
correlation of WIN 2 ( w h i c h  defines squared radii of an alkane) with 1Z. 

7.4. DISTANCE POLYNOMIAL 

Similar to the characteristic polynomial which is derived from the adjacency 
matrix, one can consider the distance matrix and its characteristic polynomial [93]. 
Hosoya and coworkers [94] considered the distance polynomial, from which an 
index Z" similar to the Hosoya Z index constructed for acyclic polynomials can be 
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constructed as the sum of the absolute values of the coefficients of  the polynomial. 
In view of  the relatively large values of  the coefficients, it is less likely that two 
graphs will have the same distance polynomial or the same Z' .  

7.5. TERMINAL POLYNOMIAL 

An important, even if not sufficiently well known, theorem for trees by 
Zaretskii [95] states that a tree is uniquely characterized by a distance matrix in 
which only entries for terminal vertices are included. In table 8, we list terminal 
polynomials for some smaller trees. Kleiner and Randi6 [96] examined the properties 

Table 8 

Illustration of terminal polynomials of some smaller trees. 

Terminal matrix Terminal polynomial Graph 

2 0 3  
3 3 0  
5 5 4  

l !  24450430 ~~/ 

X 4 -- 8 8  X 2 -- 3 7 6  x -  4 1 6  

x 4 - 95 x z - 4 0 4  x - 4 4 4  

x 4 - 108 x 2 - 400 x - 384 

x 4 - 84 x z - 384 x - 476 

oi io  

o io i  

oIooIo  

ooII O O 

of  associated characteristic polynomials, with a particular interest in the occurrence 
of  isospectral trees for Zaretskii matrices. An extensive computer search among 
trees with three terminal vertices, each branch having up to 30 vertices, for isospectral 
cases has revealed none. However, by examining the structure of  the polynomials, 
it was possible to construct a pair of  trees with isospectral terminal polynomials, 
shown in table 9 [97]. It is not known whether this particular pair is the smallest 
such pair. 
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T a b l e  9 

I s o s p e c t r a l  t e r m i n a l  p o l y n o m i a l s  

T(G ; x) = x 3 - xl.22 + xl,3~ + xK32)x - 2(Xl, 2 Xl, 3 X2,3) 

11 116  

xl. 1 = 97  + 88 xl .  1 = 32  + 116 

xl .  3 = 9 7  + 11 xl .  3 = 3 2  + 4 9  

x2, 3 = 9 7  + 88 xs. 3 = 116 + 4 9  

T(GI;  x)  = x 3 - [ (185)  2 + ( 1 0 8 )  1 + ( 9 9 ) 1 ] x -  2 ( 1 8 5 ) ( 1 0 8 ) ( 9 9 )  

= x 3 - 5 5 , 6 9 0 x  - 3 , 9 5 6 , 0 4 0  

T(G1;x  ) = X 3 - [ ( 1 4 8 )  2 + (81)  1 + ( 1 6 5 ) 1 ] x  - 2 ( 1 4 8 ) ( 8 1 ) ( 1 6 5 )  

= x 3 - 5 5 , 6 9 0 x  - 3 , 9 5 6 , 0 4 0  

7.6.  B I P A R T I T E  P O L Y N O M I A L  

One can derive the acyclic polynomial from the characteristic polynomial by 
counting only contributions to the polynomial arising from disjoint edges. This is 
precisely entailed in Hosoya's construction of his Z index. If one includes, besides 
isolated edges, also contributions of even cycles, but not odd cycles, one obtains 
a novel polynomial named the bipartite polynomial [98]. Bipartite polynomials 
coincide with the characteristic polynomial of bipartite graphs (that is, graphs with 
only even cycles) as acyclic polynomials coincide with the characteristic polynomial 
for trees. So far, we know little about the bipartite polynomials, including the 
question of whether their roots are always real. In table 10, we illustrate bipartite 
polynomials for selected graphs. 

7.7.  V I C I N A L  P O L Y N O M I A L  

Another polynomial that may be a source of useful invariants is derived from 
a vicinal matrix, a matrix the entries of which count the occurrence of paths (i,j) 
in a qualified graph. Such a matrix was mentioned in a work of Zefirov and 
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T a b l e  10 

I l l u s t r a t i o n  o f  b i p a r t i t e  p o l y n o m i a l s  fo r  the  P e t e r s e n  g r a p h  a n d  s o m e  o f  its s u b g r a p h s .  

G r a p h  B i p a r t i t e  p o l y n o m i a l s  

(-+ 
x 7 - 8x 5 + 17x  3 - 10x 

x s - 9 x  6 + 2 3 x  a - 19x  2 + 4 

x 10 - 12x 8 + 4 8 x  6 - 7 5 x  4 + 3 9 x  2 - 3 

x 9 - 12x  7 + 4 5 x  5 - 66x  3 + 2 4 x  

x 1° - 15x  8 + 7 5 x  6 - 1 6 5 x  n + 1 2 0 x  ~ - 6 
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collaborators [99], but it was not considered separately. Rather, it was combined 
with the adjacency matrix in an attempt to arrive at a novel topological index. 
Recently, however, the vicinal matrix received some attention [100]. While the 
coefficients of the associated characteristic polynomial show a wide variation in 
size among isomers, nevertheless the first eigenvalue (the largest positive eigenvalue) 
of vicinal matrices shows some regularities in isomeric variations (table 11). 

Table  11 

Il lustration of  vicinal polynomials .  

Graph Vicinal polynomial  First e igenvalue  

o o e~- -o----~ o X 6 -  406X 4 -  24560X 3 -- 15715X 2 -- 4200X + 37375 24.809 

O - - - - I  0 O - -  -0 x 6 -  304x 4 -  2671x 3 -  6360x 2 -  577x + 3415 21.094 

0 0 O - -  - < )  . . . . .  0 x 6 - 270x 4 - 2130x 3 + 4050x z - 2400x + 2375 19.703 

o x 6 -  209x 4 -  1424x 3 -  2801x 2 -  2160x - 575 17.345 

o t o-- ---o x 6 - 198x 4 - 1162x 3 - 1620x z - 540x + 115 16.559 

7.8. G E N E R A L I Z E D  W H E L A N D  P O L Y N O M I A L  

We end this section on polynomials by considering the generalized Wheland 
polynomial. Wheland [101] introduced a counting polynomial having the recursion: 

W h ( G  ; x )  = W h ( G  - E ; x )  + (1 - x )  W h ( G  - EE;  x) ,  

where G - E is a graph with edge E deleted and G - E E  is a graph with deleted edge 
E and its incident edges. W h ( G ;  x )  counts the "valence structures of different degrees 
of excitation" [101], which are of interest in VB calculations. Unfortunately, W h ( G ;  x )  

is not a graph or structural invariant. The form of the polynomial depends on the 
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selection of the canonical valence structures and these in turn depend on the assumed 
numbering of vertices, as discussed at some length by Ohkami and Hosoya [102]. 
However, if the Wheland polynomial is generalized so that it counts not only 
canonical valence structures but all the valence structures, we obtain polynomials 
GW(G;x), a generalized Wheland polynomial. GW stands for George Wheland, a 
brilliant scientist who was prematurely incapacitated [103]. The coefficients of the 
generalized Wheland polynomial represent invariants, and hence may offer 
useful molecular descriptors. Properties of GW(G;x) polynomials received some 
attention [104]. 

8. Matrices as a source of invariants 

Although there have been many efforts to enlarge the pool of molecular 
descriptors by considering various ad hoc constructions, generalized matrices as a 
source of graph invariants have been for too long overlooked. Even before 1940, 
Balandin [105] advocated the use of matrices in studies of molecular properties. He 
constructed various matrices by substituting selected molecular properties as matrix 
entries. If one restricts such considerations to mathematical properties, which can 
always be derived accurately and made available, rather than using experimental 
properties which are often inaccurate or unavailable, one would immediately enlarge 
the pool of structural invariants enormously. Such an approach has recently been 
advocated [6], and we will follow by briefly listing a few of such more general 
matrices of potential interest. 

8.1. TWO-DIMENSIONAL TOPOGRAPHIC MATRICES 

Consider a regular hexagonal lattice (honeycomb or graphite lattice) and 
graphs embedded on such a lattice. The same graph (up to isomerism) can now 
occur in different conformations, as illustrated in fig. 11, for the carbon atom 

S 
Fig. 11. Graphite (honeycomb) lattice with two distinct embeddings 
of a butadiene (chain of four carbon atoms, with hydrogens suppressed). 
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skeletons of  cis- and trans-butadiene. If we assume a standard CC bond length of  
1, the two cases lead to different distance matrices [106]" 

cis-butadiene 01 !] 
1 0 1 

1 0 

2 ~ 1 

trans-butadiene 

0 

1 0 1 

1 0 1 

1 0 

One now expects that many invariants derived from these two different matrices 
will in general be different. Hence, such topographic matrices (with idealized molecular 
geometries enforced by embedding on a regular hexagonal grid) will lead to molecular 
descriptors which will discriminate among conformers of the same molecular graph. 

8.2. THREE-DIMENSIONAL TOPOGRAPHIC MATRICES 

The same approach can be extended to alkanes and other related saturated 
compounds by replacing a two-dimensional honeycomb grid by a three-dimensional 
diamond grid (fig. 12) [107]. In table 12, we illustrate such a matrix for the all-trans 

2-Jo0 

Fig. 12. Diamond lattice characterized by tetrahedral 
angle. The four directions lead to coordinates x, y, z, u 
(indicated for several points close to the origin (0, 0, 0, 0)). 
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Table 12 

The geometry matrix and the weighted paths obtained from this matrix for n-pentane (a straight 
chain of five carbon atoms with tetrahedral angle of 109028 ' between the adjacent bonds). 

Graph Geometry matrix 

0 1 1.6330 2.5166 3.2660 
2 4 

1 / < " D - ~ a / / ~ . . Q  1 0 1 1.6330 2.5166 

1.6330 1 0 1 1.6330 

0 = 109028 ' 2.5166 1.6330 1 0 1 

3.2660 2.5166 1.6330 1 0 

Atom Paths Atomic ID 

1 1.1222 0.7442 0.3348 0.0748 3.2761 

2 0.9301 0.7004 0.3676 0.0898 3.0879 

3 0.8421 0.6953 0.3509 0.1002 2.9886 

Molecule 2.4734 1.7924 0.8779 0.2147 10.3583 

rotational isomer (rotamers) of n-pentane. The ALLPATH program [108], which 
counts all paths (or alternatively, all weighted paths), has been changed to count 
paths in topographic matrices. Since matrices are no longer sparse, the computational 
time required to count all paths increases considerably. As the size of such 
matrices increases, eventually the computations will not be practical after a 
certain size. 

8.3. GEOMETRY-DISTANCE MATRIX 

Of course, many molecular geometries do not involve a simple trigonal 
hybridization (angle of 120 °) associated with the graphite lattice or tetrahedral 
hybridation (angle 109028 ') associated with the diamond grid as are ubiquitous 
in carbon chemistry. Hence, a matrix in which entries show Euclidean distances 
between atoms may be considered. Such a geometric matrix, as well as other 
matrices with no zero off-diagonal entries, considerably increase the compu- 
tational time when all paths are to be enumerated. Hence, some truncated form of 
such matrices may become desirable if the analysis is to be extended to larger 
compounds. 
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8.4. GEODESIC MATRIX 

In polyhedra, geodesic distances may be of  interest, measured over the surface 
of  the polyhedra, rather than geometric distance measured "through space". If one 
restricts distances only between vertices having a common face (that is, the nearest 
neighbors and vertices with a common face), one obtains simple matrices, i.e. 
matrices with several zero entries. Such matrices nevertheless contain the essential 
information for a reconstruction of  the polyhedron. In table 13, we illustrate such 
a facial matrix for the graph shown [109]. 

Table  13 

Illustration of a polyhedron and its adjacency matrix in which  
only distances for vertices belonging to file same face are included. 

o , , , , ~  o o ~  o o o 

, o , , , ~  , , ~  o o o o 

, , o ~  o o ~  , , o o o 

, , , ~  ,, , o o o , , ~  o 

i ~  o , o , o o o ~  , o 

~ , o o , o , o o o  , d  
0 1 ~[2 0 0 1 0 1 0 0 0 1 

0 3 / 2  l 0 0 0  l 0 l ~ / ~ O  l 

¢-2~ 0 l l 0 0 0 1 0 1 0 ~/'2 

0 0 0 1 2 0 0 ¢-2 1 0 1 1 

0 0 0 ¢-2 1 1 0 0 0 1 0 1 

0 0 0 0 0 3 / 2  1 1 3 / ' 2  1 1 0 

6 
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8.5. WILSON'S G -1 MATRIX 

An alternative to the geometry matrix is the G -I matrix of  Wilson [17] and 
Eliashevich [110] which incorporates, in addition to geometrical features, also the 
masses of the atoms involved. 

8.6. BOND FUNCTION MATRICES 

Since entries of a matrix correspond to pairs (i,j) of vertices, any function 
F(i,j) will, in general, lead to an associated matrix F. If (i,j) represents force 
constants in a potential function, F becomes the F matrix of  Wilson's FG matrix 
method for the calculation of normal coordinates of molecules [17]. F(i,j) can 
represent rather arbitrary quantities, in which case we will obtain a family 
of  F-matrices with the corresponding interpretation. Let us mention a few choices 
only: 

(a) 

(b) 

(c) 

F represents Pauling bond order [111]; 

F represents Coulson bond orders [112]; 

F represents generalized bond order (vide infra) [113]. 

9. Novel approaches and novel invariants 

From what is outlined above, we see that the only limit to the design of 
invariants is the imagination and resourcefulness of investigators. Hence, a proliferation 
of structural invariants is to be expected. While some may be alarmed by such a 
prospect others, including this author, welcome such developments provided some 
rules in the game of  designing new invariants are observed. The situation is similar 
to a search for a system of codes and a design of  codes for chemical structures in 
particular. There, too, rules have to be obeyed if one is interested in developing a 
system of nomenclature that has promise for practical use. In table 14, we summarize 
a few of the more important desired properties for codes, due to Read [114]. 
Analogous rules for the construction of invariants (topological indices in particular) 
that this author has advanced [115] are also listed in table 14. Balaban similarly 
listed some requirements for a satisfactory topological index [116]. Such descriptors 
are mainly to be used in multiple regressions, where the prime criterion for a 
successful correlation can be summarized in two commands: 

(1) use as few descriptors as possible; and 

(2) use descriptors with a direct structural interpretation. 

The first command ensures a viable statistics (reliability) and the second a viable 
interpretation (insight, understanding). With a recently introduced approach to 
multivariate regression based on the construction of orthogonal molecular 



134 M. Randik, In search of structural invariants 

Table 14 

Requirements for codes according to Read and analogous requirements for 
structural invariants o f  potential interest in structure-property-act ivi ty  studies. 

Requirements for codes as proposed by R ead  Desirable attributes for topological  indices 

1 Codes should be linear strings of symbols 

2 Codes should be unique 

3 Reconstruction algorithm should be defined 

4 Codes should be simple (preferably made by hand) 

5 Decoding should be possible, preferably by hand 

6 Nonsystematic (trivial) names should not be used 

7 Properties should not be used 

8 Codes should be brief 

9 Codes should be pronouncable 

10 Codes should be easily understood 

11 Familiar symbols only should be used 

12 Coding and decoding should be efficient 

13 Similar structures should have codes of similar length 

(proposed by Randir) 

1 Direct structural interpretations 

2 Good correlation with at least one property 

3 Good discrimination of isomers 

4 Locally defined 

5 Generalizable to "higher" analogues 

6 Linearly independent 

7 Simplicity 

8 Not based on physico-chemical properties 

9 Not trivially related to other indices 
10 Efficiency of construction 

11 Based on familiar structural concepts 

12 Show a correct size-dependence 

13 Gradual change with gradual change in structures 

descriptors [117], it may be possible to extract the dominant descriptors from a 
given initial set of  descriptors. The methodology of  orthogonal descriptors can also 
be applied to compact relevant structural information in fewer descriptors [118]. It 
thus appears that more attention ought to be given to the interpretation of  descriptors 
rather than merely to generating descriptors, the interpretation of which becomes 
more and more involved. In this respect, for instance, one may view eigenvalues 
(graph spectra) as convoluted, although conceptually not involved. That is, for 
given graphs, most often one cannot simply by inspection (by examining various 
fragments present, etc.) in general say much about their spectra. In contrast, in 
many instances one may, by inspection, derive several simple topological indices, 
such as Hosoya's Z, the Wiener number or the connectivity index 1Z. In this way, 
one may try to interpret differences between the structures to differences between 
the descriptors. For this reason, we view the former as convoluted and the latter as 
explicit. 

There are graph theoretical invariants considered in the mathematical literature 
that have not yet been tested for possible chemical applications. Such may or may 
not be of interest in chemistry, but without testing we will not know. If some 
existing mathematical invariants, and others yet to be suggested in unrelated 
mathematical analyses, are shown to correlate with some of the known molecular 
properties (even if it is for a special class of compounds), the findings may be of  
considerable interest for chemistry - not only because such invariants may offer a 
novel predictive tool in structure-property studies, or an alternative route to a 
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certain molecular property, but they may give additional insight into s t ructure-  
property relationships. Finally, such results may show novel mathematical concepts 
of  use in chemistry. In addition to the pragmatic aspects of  such for QSAR, and 
s t ructure-proper ty  analysis in general, it is of  considerable interest, at least to some 
of  us, to find out what kind of  mathematics is hidden in chemistry - even if this 
in some instances may merely represent an altemative to a well-understood relationship. 
To quote Feynman [119]: 

"The formulation is mathematically equivalent to the more usual 
formulation. There are, therefore, no fundamentally new results. However, 
there is a pleasure in recognizing old things from a new point of  view." 

10. An illustration: Generalized bond orders 

Consider the already discussed molecular descriptors Z (total number of 
nonadjacent edges), W (total number of  graph distances), and P (the total number 
of paths in a graph), given by integers or the descriptors Z and J given as real 
numbers. One way of  arriving at novel invariants using the existing ones is to 
consider novel concepts yet applied on old invariants. One such approach recently 
outlined [115] is to consider local invariants and combine them into a global 
invariant. For example, if in a graph G we erase an edge E we can evaluate for the 
graph G - E a selected invariant X (X = Z, W, P, Z, J, etc.). If we refer to the derived 
value for the invariant as X', which is a bond function, then X'  or X' /X can be 
viewed as entries in the matrix F(i , j )  mentioned before. In this way, additional 
matrices for a graph G can be composed. If one adds all bond values of X' /X  for 
a graph, one obtains a novel single-number representation of  a graph G, a novel 
topological index. This outlines yet another approach to novel invariants based on 
the use of  existing graph invariants. B alaban and coworkers [120] recently described 
a general approach to the construction of local graph invariants. The descriptors 
X' /X may be viewed as a modification of their more general scheme in that the 
fragment used is a single edge rather than a fragment. However, in constructing 
X'/X, we add the contributions rather than combining them in a multiplicative 
fashion as advocated by Balaban and coworkers. 

Again, we must emphasize that a construction of a novel invariant that shows 
no advantages in s t ructure-property  or structure-activity analyses over the existing 
descriptors will produce little interest in chemical circles. In another study [121], 
Balaban and coworkers outlined a very general prolific approach for obtaining 
novel invarants based on multiplication of matrices with suitably selected vectors. 
Hence, it is not difficult to come across novel invariants. However, if such constructions 
do not yield a simple s t rue tura l  interpretation, even if successful in a regression 
analysis, we will be leR in the dark as to which structural elements are essential 
for the particular property. Therefore, if a successful regression is not based on 
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structurally meaningful descriptors, at best it solves half the problem; it produces 
a regression of better statistical qualities. However, that is not the sole goal in 
structure-property-activity studies. A better multivariate regression will undoubtedly 
lead to more accurate predictions, but will tell us little about the structural factors 
that dominate a property. We know that the total wave function suffices to compute 
selected molecular properties. Hence, from accurate wave functions for two molecules 
we can in principle, if not in practice, compute selected properties and find that 
molecule A, say, has greater total energy or greater binding energy than molecule 
B. However, why this is the case we do not know because accurate wave functions 
are so convoluted that auxiliary quantities (often nonobservables such as orbital 
populations, orbital energies, bond orders, etc.) have to be invoked. Here is an 
opportunity for the chemical graph theory to come forward with adequate structural 
invariants that can rationalize small differences in properties of similar molecules 
by quantities which are conceptually simple and structurally unambiguous. 
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